
Introduction	to	Reinforcement	Learning	
and Policy-Gradients	with	Tensor-Flow

Frederik	Ebert	(UC	Berkeley)
Stanford	CS	20,	03-07-2018

Slides adapted from (Berkeley	CS	294:	Deep Reinforcement	Learning	by Sergey	Levine)

Why	Reinforcement	Learning?

Today’s	Lecture

1. Definition	of	reinforcement	learning	problem
2. Brief	overview	of	RL	algorithm	types
3. Introduction	to	policy	gradient	algorithms
4. Implementation	of	policy	gradient	algorithms	in	TF

• Goals:
• Understand	definitions	&	notation
• Get	an	overview	of	different	reinforcement	learning	algorithms
• Understand	how	the	policy	gradient	RL-algorithm	can	be	implemented	in	TF

Definitions

1.	run	away
2.	ignore
3.	pet

Terminology	&	notation

Reward	functions

Definitions

Expectations	and	stochastic	systems

infinite	horizon	case finite	horizon	case

In	RL,	we	almost	always	care	about	expectations

+1 -1

Algorithms

Types	of	RL	algorithms

• Policy	gradients:	directly	differentiate	the	above	objective
• Value-based:	estimate	value	function	or	Q-function	of	the	optimal	policy	
(no	explicit	policy)
• Actor-critic:	estimate	value	function	or	Q-function	of	the	current	policy,	
use	it	to	improve	policy
• Model-based	RL:	estimate	the	transition	model,	and	then…
• Use	it	for	planning	(no	explicit	policy)
• Use	it	to	improve	a	policy
• Something	else

Direct	policy	gradients

generate	samples	
(i.e.	run	the	policy)

estimate	the	return

improve	the	policy

Value	function	based	algorithms

generate	samples	
(i.e.	run	the	policy)

fit	a	model/	
estimate	the	return

improve	the	policy

Examples:
• Value-Iteration
• Q-Learning
• DQN

Actor-critic:	value	functions	+	policy	gradients

generate	samples	
(i.e.	run	the	policy)

fit	a	model/	
estimate	the	return

improve	the	policy

Model-based	RL	algorithms

generate	samples	
(i.e.	run	the	policy)

fit	a	model

improve	the	policy

Comparison:	sample	efficiency

• Sample	efficiency	=	how	many	samples	
do	we	need	to	get	a	good	policy?
• Most	important	question:	is	the	
algorithm	off	policy?
• Off	policy:	able	to	improve	the	policy	
without	generating	new	samples	from	that	
policy

• On	policy:	each	time	the	policy	is	changed,	
even	a	little	bit,	we	need	to	generate	new	
samples

generate	
samples	 (i.e.	
run	the	policy)

fit	a	model/	
estimate	return

improve	the	
policy

just	one	gradient	step

Comparison:	sample	efficiency

More	efficient	
(fewer	samples)

Less	efficient	
(more	samples)

on-policyoff-policy

Why	would	we	use	a	less efficient	algorithm?

Wall	clock	time	is	not	the	same	as	efficiency!

evolutionary	or	
gradient-free	
algorithms

on-policy	policy	
gradient	
algorithms

actor-critic
style	
methods

off-policy	
Q-function	
learning

model-based	
deep	RL

model-based	
shallow	RL

Comparison:	stability	and	ease	of	use
• Value	function	fitting

• At	best,	minimizes	error	of	fit	(“Bellman	error”)
• Not	the	same	as	expected	reward

• At	worst,	doesn’t	optimize	anything
• Many	popular	deep	RL	value	fitting	algorithms	are	not	guaranteed	to	converge	to	
anything in	the	nonlinear	case

• Model-based	RL
• Model	minimizes	error	of	fit

• This	will	converge
• No	guarantee	that	better	model	=	better	policy

• Policy	gradient
• The	only	one	that	actually	performs	gradient	descent	(ascent)	on	the	true	
objective

Example:	Robotic	Manipulation	with	value	function	based	algorithm

For	detail	see	the	Normalized	Advantage	Function	 (NAF)	algorithm

Introduction	to	Policy	Gradients

Evaluating	the	objective

Direct	policy	differentiation

a	convenient	identity

Evaluating	the	policy	gradient

generate	samples	
(i.e.	run	the	policy)

estimate	return

improve	the	policy

Example:	Gaussian	policies

What	did	we	just	do?

good	stuff	is	made	more	likely

bad	stuff	is	made	less	likely

simply	formalizes	the	notion	of	“trial	and	error”!

Reducing	variance

“reward	to	go”

What	you	do	now	does	not affect	the	reward	of	the	past!

Baselines

but…	are	we	allowed to	do	that??

subtracting	a	baseline	is	unbiased in	expectation!

average	reward	is	not the	best	baseline,	but	it’s	pretty	good!

a	convenient	 identity

Implementation	of	Policy	Gradients

Policy	gradient	with	automatic	differentiation

Policy	gradient	with	automatic	differentiation
Pseudocode	example	(with	discrete	actions):

Policy	gradient:
Given:
actions - (N*T) x Da tensor of actions
states - (N*T) x Ds tensor of states
rew_to_go – (N*T) x 1 tensor of estimated reward to go
Build the graph:
logits = policy.predictions(states) # This should return (N*T) x Da tensor of action logits
negative_likelihoods = tf.nn.softmax_cross_entropy_with_logits(labels=actions, logits=logits)
weighted_negative_likelihoods = tf.multiply(negative_likelihoods, rew_to_go)
loss = tf.reduce_mean(weighted_negative_likelihoods)
gradients = loss.gradients(loss, variables)

Reward to go

Policy	gradient	with	automatic	differentiation
Pseudocode	example	(with	discrete	actions):

Policy	gradient:
Given:
actions - (N*T) x Da tensor of actions
states - (N*T) x Ds tensor of states
rew_to_go – (N*T) x 1 tensor of estimated reward to go
Build the graph:
mean = policy.predictions(states) # This should return (N*T) x Da tensor of action logits
negative_likelihoods = gaussian_log_prob(sy_ac_na, mean, sy_logstd)
weighted_negative_likelihoods = tf.multiply(negative_likelihoods, rew_to_go)
loss = tf.reduce_mean(weighted_negative_likelihoods)
gradients = loss.gradients(loss, variables)

Reward to go

Policy	gradient	in	practice

• Remember	that	the	gradient	has	high	variance
• This	isn’t	the	same	as	supervised	learning!
• Gradients	will	be	really	noisy!

• Consider	using	much	larger	batches
• Tweaking	learning	rates	is	very	hard
• Adaptive	step	size	rules	like	ADAM	can	be	OK-ish
• There	exist	algorithms	that	adjust	the	gradient	stepsize to	obtain	more	
stability,	such	as	Trust-Region	Policy	Optimization	(TRPO)	and	Proximal	
Policy	Optimization	(PPO)

Suggested	Project

• Implement	policy	gradient	as	in	homework	2 of	CS	294:	DeepRL,	Fall	2017
• Vanilla	policy	gradient	algorithm	in	Tensorflow
• Add	baseline	for	variance	reduction
• Agents	trained	for	Inverted	Pendulum	and	Cheetah	environments
(for	Cheetah	Mujocophysics	engine	necessary,	30	day	trial	license	available)
• Most	of	the	code	is	prepared,	you	only	need	to	fill	in	a	couple	of	blanks

The	material	was	prepared	by	Abhishek	Gupta	and	Josh	Aicham.

Example:	trust	region	policy	optimization,	policies	
initialized	from	demonstration
• Natural	gradient	with	
automatic	step	
adjustment	
• Discrete	and	
continuous	actions
• Using	a	small	number	
of	demonstrations	to	
overcome	exploration	
problem.

Beyond	RL:	Self-supervised	Learning	with
Video-Prediction	and	Sampling	Based	Planning

Self-Supervised	Visual	Planning	with	Temporal	Skip-Connections,	 Ebert	et	al.	2017

Policy	gradients	suggested	lectures	and	readings	

• Lectures	online:	Berkeley	CS	294,	Course	at	UCL	by David	Silver
• Classic	papers

• Williams	(1992).	Simple	statistical	gradient-following	algorithms	for	connectionist	reinforcement	
learning:	introduces	REINFORCE	algorithm

• Baxter	&	Bartlett	(2001).	Infinite-horizon	policy-gradient	estimation:	temporally	decomposed	
policy	gradient	(not	the	first	paper	on	this!	see	actor-critic	section	later)

• Peters	&	Schaal (2008).	Reinforcement	learning	of	motor	skills	with	policy	gradients:	very	
accessible	overview	of	optimal	baselines	and	natural	gradient

• Deep	reinforcement	learning	policy	gradient	papers
• Levine	&	Koltun (2013).	Guided	policy	search:	deep	RL	with	importance	sampled	policy	gradient	
(unrelated	to	later	discussion	of	guided	policy	search)

• Schulman,	L.,	Moritz,	Jordan,	Abbeel (2015).	Trust	region	policy	optimization:	deep	RL	with	
natural	policy	gradient	and	adaptive	step	size

• Schulman,	Wolski,	Dhariwal,	Radford,	Klimov (2017).	Proximal	policy	optimization	algorithms:	
deep	RL	with	importance	sampled	policy	gradient

