Introduction to Reinforcement Lear

and Policy-Gradients with Te

Frederik Ebert (UC Berkeley)
Stanford CS 20, 03-07-2018

Nsor-F

NiNg

oW

Slides adapted from (Berkeley CS 294: Deep Reinforcement Learning by Sergey Levine)

Why Reinforcement Learning?

IRPLEX FA.R I.€2/ ! FAIRPI.GK

e c——

Today’s Lecture

1. Definition of reinforcement learning problem

2. Brief overview of RL algorithm types

3. Introduction to policy gradient algorithms

4. Implementation of policy gradient algorithms in TF
* Goals:

* Understand definitions & notation
* Get an overview of different reinforcementlearning algorithms
* Understand how the policy gradient RL-algorithm can be implementedin TF

Definitions

Terminology & notation

ATy
mo(at|o¢)
S; — state
0; — observation 7o (az|oy) — policy
a; — action mo(az|s¢) — policy (fully observed)

Markov property
independent of s;_1

Reward functions

which action is better or worse? s, a, r(s,a), and p(s’|s,a) define
r(s,a): reward function Markov decision process

tells us which states and actions are better

low reward

Definitions

partially observed Markov decision process M={S A0, T, r}
S — state space states s € S (discrete or continuous)

A — action space actions a € A (discrete or continuous)

O — observation space observations o € O (discrete or continuous)

T — transition operator (like before) @ @ @ @ @

£ — emission probability p(o¢|s)

. 2 z ®
r — reward function r:SxA—-R

Expectations and stochastic systems

T
0" = arg max F(s a)p, (s.a) [(5, 2) 0" = argmax ¥ F(s, a,)~po(si,an [1(5t:2)
t=1
infinite horizon case finite horizon case

In RL, we almost always care about expectations

r(s,a) — not smooth
1Y) — probability of falling

E(s a)~py (s,a) [7(s,a)] — smooth in !

Algorithms

Types of RL algorithms

0* = arg m@ax ETNpe (1) [Z T(St, at)]

t

* Policy gradients: directly differentiate the above objective

* \alue-based: estimate value function or Q-function of the optimal policy
(no explicit policy)

e Actor-critic: estimate value function or Q-function of the current policy,
use it to improve policy

* Model-based RL: estimate the transition model, and then...
e Use it for planning (no explicit policy)
e Use it to improve a policy
 Somethingelse

Direct policy gradients

A — evaluate returns
estimate the return | (
= > . r(st,a
T t ts t)

generate samples

(i.e. run the policy)

el elilai] 0 <— 0 + aVoE[) , r(st, ar)]

Value function based algorithms

Examples: |
1 esti:ntaier:f?(ejer:e/turn ﬁt V(S) or Q(S’a)
e Value-Iteration
)

* Q-Learning

¢ DQN generate samples
(i.e. run the policy)
; improve the policy R 7r(s = arg maXs Q(S, a)

Actor-critic: value functions + policy gradients

fit V(s) or Q(s. a
fit a model/ () Q(’)
SSdlgEis e =it | evaluate returns
using V or Q!

generate samples
(i.e. run the policy)
; el elilai] 0 <— 0 + aVoE[) , r(st, ar)]

Model-based RL algorithms

fit a model learn p(st+1[st, at)

generate samples

(i.e. run the policy)

improve the policy ERGAe et

Comparison: sample efficiency

e Sample efficiency = how many samples
do we need to get a good policy?

* Most important question: is the generate l

fit a model/
estimate return

samples (i.e.

algorithm off policy? run the policy)

e Off policy: able to improvethe policy
without generating new samples from that

improve the
policy

policy
: : . 00+ aVel :
* On policy: each time the policyis changed, aVoL[) (st ar)
even a little bit, we need to generate new
samples

just one gradient step

Comparison: sample efficiency

off-policy < » on-policy
More efficient Less efficient
(fewer samples) (more samples)
—
model-based model-based off-policy actor-critic on-policy policy evolutionary or
shallow RL deep RL Q-function style gradient gradient-free
learning methods algorithms algorithms

Why would we use a less efficient algorithm?

Wall clock time is not the same as efficiency!

Comparison: stability and ease of use

 Value function fitting
e At best, minimizes error of fit (“Bellman error”)
 Notthesame as expected reward

* At worst, doesn’t optimize anything

* Manypopulardeep RLvalue fittingalgorithms are not guaranteed to converge to
anything in the nonlinear case

* Model-based RL

e Model minimizes error of fit
* Thiswill converge

* No guarantee that better model = better policy

* Policy gradient

* The only one that actually performs gradient descent (ascent) on the true
objective

Example: Robotic Manipulation with value function based algorithm

For detail see the Normalized Advantage Function (NAF) algorithm

Introduction to Policy Gradients

Evaluating the objective

6* = arg max Eorpy () [Z r(st, at)]

N &
L sum over samples from my

Direct policy differentiation

O* = arg ngX ETNpe (1) [; T(St, at)]

VoJ(0) = | Vema(r)r(T)dr =/7T9(T)V910g7fe(7)"“(7)d7 = Errony(r)[Valog mg(T)r(7)]

Evaluating the policy gradient
recall: J(0) = Erpo(r) [ZT Styat]%%zzr(si,taai,t)

T
VoJ(0) = Errry(r) [(Z Vo log mg(as|st)) (Zr St, &y)]

t=1

N T

VoJ(0) =~ %Z (Z Vo log we(ai,t|si,t)> (Z r(si,t,ai,t)>

1=1 \t=1 t=1

ﬁ estimate return

generate samples

0« 60+ aVeJ(6)

(i.e. run the policy)

REINFORCE algorithm:
1. sample {7'} from 7y(as|s;) (run the policy) ‘
2. VoJ(6) ~ 32; (32, Velogm(ajls}) (2, (s}, a}) RISEEIE RO

3.0 0+ aVyJ(0)

Example: Gaussian policies

N /T T
VoJ(0) ~ I Z (Z Vo log Wg(ai,t|si7t)> (Z 'r(s?;,t,ai,t)>

1=1 \t=1

example: 7o (at |St) — N(fneural network(st); E)

1
log mo(alse) = — 1 (s1) — el + const
1 d
Volog mo(adls:) = 55 (f(s:) — a) o

REINFORCE algorithm:

1. sample {7'} from my(as|s;) (run it on the robot)

2. VoJ(0) = 2, (32, Vo log mg(ailsi)) (32, r(si, al))
3.0« 0+ aVeJ(0)

lteration 2000

What did we just do?

N T
1
VoJ(0) ~ ¥ ; (;VQ log o (a; ¢|si)) <Zr Si.t, 4t)
1 N
Vo J(z; ‘Vg log g (TZ) (7‘1) maximum likelihood: VgJump(6) ~ N Zl Vo log mg(7;)
{2 T I 1=

Z Vo logy o (@i t[si,t)
t=1

good stuff is made more likely

bad stuff is made less likely

simply formalizes the notion of “trial and error”!

REINFORCE algorithm:

1. sample {7'} from my(as|s;) (run it on the robot)

2. VoJ(0) = 3, (3, Vo log mg(ailsi)) (32, r(si,al))
3.0« 0+ aVeJ(0)

Reducing variance

N T T
1
VoJ(0) =~ NZ (Zv(ylogwe (a; ¢sit)) (Zr (Sit,ait))

=1 \t=1 t=1

What you do now does not affect the reward of the past!

VoJ(6 Z Z Vo log m(a; ¢|s; t){%((&,ﬂ»%,ﬂ)))
J
Y

“reward to go”

Qit

p
a convenient identity

Baselines ro(r) Vs log mo(r) = Vama(r)

VoJ(0) ~ Z Vo log 7o (7)) — b]

b= % ZT(T) but... are we allowed to do that??

E[Vglogmy(1)b] = /W@(T)V@ log mg(T)bdr = /erg(T)de = bV@/T{'Q(T)dT =bVyl =0

subtracting a baseline is unbiased in expectation!

average reward is not the best baseline, but it’s pretty good!

Implementation of Policy Gradients

Policy gradient with automatic differentiation

N T
1 .
Vo (0) ~ . Z Z Vo log mo(ai ¢|sit) Qi
i=1 t=1

L pretty inefficient to compute these explicitly!

How can we compute policy gradients with automatic differentiation?

We need a graph such that its gradient is the policy gradient!

N T N T
1 1
maximum likelihood: VgJuL(0) ~ N Z Z Vo log mg(ai +|sit) Jur (0 N Z Z log 7o (a,¢]S4,¢)

i=1t=1 i=1t=1

Just implement “pseudo-loss” as a weighted maximum likelihood:

| N
~ ~ ZZlogﬂg(ai,t\Si,t)Q /

=1 t=1

L cross entropy (discrete) or squared error (Gaussian)

Policy gradient with automatic differentiation

Pseudocode example (with discrete actions):

Policy gradient:

Given:

actions - (N*T) x Da tensor of actions

states - (N*T) x Ds tensor of states

rew to go - (N*T) x 1 tensor of estimated reward to go

Build the graph:

logits = policy.predictions(states) # This should return (N*T) x Da tensor of action logits
negative likelihoods = tf.nn.softmax cross entropy with logits(labels=actions, logits=logits)
weighted negative likelihoods = tf.multiply(negative likelihoods, rew to_go)

loss = tf.reduce_mean(weighted negative likelihoods)

gradients = loss.gradients(loss, variables)

H H H H

1 N T
J(0) ~ N Z Z log We(ai,t’Sz‘,
Reward to go

1=1 t=1

Policy gradient with automatic differentiation

Pseudocode example (with discrete actions):

Policy gradient:

Given:

actions - (N*T) x Da tensor of actions

states - (N*T) x Ds tensor of states

rew to go - (N*T) x 1 tensor of estimated reward to go

Build the graph:

mean = policy.predictions(states) # This should return (N*T) x Da tensor of action logits
negative likelihoods = gaussian_log prob(sy ac na, mean, sy logstd)

weighted negative likelihoods = tf.multiply(negative likelihoods, rew to_go)

loss = tf.reduce_mean(weighted negative likelihoods)

gradients = loss.gradients(loss, variables)

H H H H H

1 N

T
~ 1
logmo(arlse) = —5If(s) —adl Feonst - J0)~ 5373 Stogmota Qi)
Reward to go

=1 t=1

Policy gradient in practice

* Remember that the gradient has high variance
* Thisisn’t the same as supervised learning!
* Gradients will be really noisy!

* Consider using much larger batches

* Tweaking learning rates is very hard
* Adaptive step size rules like ADAM can be OK-ish

* There exist algorithms that adjust the gradient stepsize to obtain more
stability, such as Trust-Region Policy Optimization (TRPO) and Proximal
Policy Optimization (PPO)

Suggested Project

* Implement policy gradient as in homework 2 of CS 294: DeepRL, Fall 2017

* Vanillapolicygradient algorithm in Tensorflow
* Add baseline for variance reduction

* Agents trained for Inverted Pendulumand Cheetah environments
(for Cheetah Mujoco physics engine necessary, 30 day trial license available)
* Most of the code is prepared, you only need tofill in a couple of blanks

The material was prepared by Abhishek Gupta and Josh Aicham.

Example: trust region policy optimization, policies
initialized from demonstration

* Natural gradient with
automatic step
adjustment

Leaning Complex Dexterous Manipulation
with

o Dlscrete and & Demonstrations

continuous actions

* Using a small number
of demonstrations to
overcome exploration
problem.

Aravind Rajeswaran®*, Vikash Kumar *, Abhishek Gupta, John Schulman,
Emanuel Todorov, Sergey Levine

Beyond RL: Self-supervised Learning with
Video-Prediction and Sampling Based Planning

Self-Supervised Visual Planning with Temporal Skip-Connections, Ebert et al. 2017

Policy gradients suggested lectures and readings

e Lectures online:Berkeley CS 294, Course at UCL by David Silver

 Classic papers

* Williams (1992). Simple statistical gradient-following algorithms for connectionist reinforcement
learning:introduces REINFORCE algorithm

* Baxter & Bartlett (2001). Infinite-horizon policy-gradient estimation: temporally decomposed
policy gradient (not the first paper on this! see actor-critic section later)

* Peters & Schaal (2008). Reinforcement learning of motor skills with policy gradients: very
accessible overview of optimal baselines and natural gradient
* Deep reinforcementlearning policy gradient papers

* Levine & Koltun (2013). Guided policy search: deep RL with importance sampled policy gradient
(unrelated to later discussion of guided policy search)

* Schulman, L., Moritz, Jordan, Abbeel (2015). Trust region policy optimization: deep RL with
natural policy gradient and adaptive step size

e Schulman, Wolski, Dhariwal, Radford, Klimov (2017). Proximal policy optimization algorithms:
deep RLwith importance sampled policy gradient

